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Abstract. In this paper we find conditions under which the properties of Menger, almost Menger and
weakly Menger are equivalent as well as the corresponding properties of Lindelöf-type. We give coun-
terexamples that show the interrelations between those properties. The subject of our investigation is also
the preservation of almost Menger and weakly Menger properties under subspaces and products. We also
consider the weaker versions of Alster space and D-spaces.

1. Introduction and notation

The Menger property is a familiar topological notion introduced in [17] by K. Menger in 1924 and
systematically studied since the paper [21] by Scheepers. Recently, the notions of almost Menger and
weakly Menger properties were introduced and considered (see [8], [14], [15], [18]). In [9], Di Maio and
Kočinac considered almost Menger property in hyperspaces. In [5] almost Menger and weakly Menger
properties were considered in infinite games and in [4] Babinkostova, Pansera and Scheepers considered
the productivity of weakly Menger property. Survey paper [7] also concerns weakly Menger property.

Recall that a topological space X is Menger (resp. almost Menger, weakly Menger) if for every sequence
(Un : n ∈ N) of open covers of X, there exists a sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a
finite subset ofUn and

⋃
{Vn : n ∈N} = X (resp.

⋃
n∈N{V : V ∈ Vn} = X,

⋃
{Vn : n ∈N} is dense in X).

On the other hand, many authors considered properties of Lindelöf type such as almost Lindelöf, weakly
Lindelöf and quasi-Lindelöf (see [6], [22], [26]). Note that the notion of quasi-Lindelöf was introduced by
Arhangel’skii and that recently the notion of quasi-Menger was introduced and considered by Di Maio and
Kočinac in [10]. We say that a topological space X is Lindelöf (resp. almost Lindelöf, weakly Lindelöf ) if for
every open coverU of X there exists a countable subsetV ofU such that

⋃
V = X (resp.

⋃
{V : V ∈ V} = X,⋃

V is dense in X).
We have the following implications between these notions:
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Menger → almost Menger→weakly Menger
↓ ↓ ↓

Lindelöf →almost Lindelöf→weakly Lindelöf

Neither of these implications is reversible. Pansera in [18] gave examples showing that weakly Menger
property does not imply almost Menger property even in Tychonoff spaces. In [14] we showed that there
exists a topological space which is almost Menger and not Lindelöf and therefore, not Menger. Recently,
Sakai in [19] gave an example of a topological space which is Lindelöf and not weakly Menger. So, in the
previous diagram no other implication holds between given notions.

In Section 1 we examine conditions under which some of these notions are equivalent.
In Section 2 we investigate the behavior of almost Menger and weakly Menger properties with respect

to subspaces and products. We also consider the almost version of Alster property.
In [3] Aurichi proved that Menger spaces are D-spaces. In Section 4 we study the analogous assertions

for the almost version of Menger property.
Let X be a topological space. We use the following notation:

O – the collection of all open covers of X;

D – the collection of all familiesU of open subsets of X such that
⋃
U is dense in X;

O – the collection of all familiesU of open subsets of X such that {U : U ∈ U} is a cover of X.

LetA and B be collections of open subsets of a topological space X. Then the symbol S1(A,B) denotes
the selection hypothesis that for each sequence (An : n ∈ N) of elements from A there exists a sequence
(Bn : n ∈ N) such that for each n ∈ N, Bn ∈ An and {Bn : n ∈ N} is an element of B and S f in(A,B) denotes
the selection hypothesis that for each sequence (An : n ∈ N) of elements from A there exists a sequence
(Bn : n ∈N) so that Bn is a finite subset of An for each n ∈N and {Bn : n ∈N} is an element from B.

Note that a topological space X is Menger (resp. almost Menger, weakly Menger) if it satisfies the
selection hypothesis S f in(O,O) (resp. S f in(O,O), S f in(O,D)).

Other notation and terminology are as in [12].

2. Conditions of equivalence

In [14] it was shown that in regular spaces, Menger property and almost Menger property are equivalent.
The following example shows that in Urysohn spaces the equivalence of these properties fails.

Example 2.1. A Urysohn, first countable, almost Menger space which does not have the Menger property.

Let R be the set of real numbers with the Euclidean topology τ and let Q be the set of rational numbers.
We define τ

′

, the pointed rational extension of R (see [23], Example 68), to be the topology generated by
{x} ∪ (Q ∩U), where x ∈ U ∈ τ.

(R, τ
′

) is Urysohn, because (R, τ) is Urysohn and closures of open sets in τ and τ
′

are equal. (R, τ
′

) is
not Lindelöf and therefore it is not Menger. Since the closures of open sets in (R, τ

′

) are the same as in the
Euclidean topology and (R, τ) is Menger, then (R, τ

′

) is almost Menger.

On the other hand, weakly Menger and almost Menger properties are not equivalent in regular spaces.
Pansera proved even more (see [18]): that there exists a Tychonoff, weakly Menger space that is not almost
Menger. We give an example of regular, weakly Menger space which is not almost Menger.
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Example 2.2. A regular, separable weakly Menger space which is not almost Menger.

Let R be the set of reals numbers, I the set of irrational numbers and Q the set of rational numbers and
for each irrational x we choose a sequence {ri : i ∈N} of rational numbers converging to it in the Euclidean
topology. The rational sequence topology τ (see [23], Example 65) is then defined by declaring each rational
open and selecting the sets Uα(x) = {xα,i : i ∈ N} ∪ {x} as a basis for the irrational point x. If r ∈ Q, then
the closure of {r} with respect to τ is equal {r}, and for every x ∈ I, the closure of Uα(x) is equal Uα(x). For
every n ∈ N Un = {r : r ∈ Q} ∪ {Un(x) : x ∈ I} is an open cover of (R, τ). (R, τ) does not have the almost
Menger property because every x ∈ I belongs to closure of only one element fromUn for each n ∈ N and
since I is uncountable, we can not find a sequence (Vn : n ∈N) of finite subsets ofUn for every n ∈N such
that every x ∈ I is covered by

⋃
n∈N{V : V ∈ Vn}. On the other hand, (R, τ) is weakly Menger, because Q is

dense in (R, τ). Note that this space is not Lindelöf, so this space can be used also as an example of weakly
Menger and not Lindelöf space.

It is natural to ask under which conditions these properties are equivalent. In Theorem 9 from [18] it
is proved that in hypocompact spaces the properties of Menger and almost Menger are equivalent. The
following proposition answers Pansera’s question from [18] concerning conditions under which weakly
Menger and almost Menger properties are equivalent.

Recall that a topological space X is P-space if every intersection of countably many open subsets of X is
open. The following assertion holds:

Proposition 2.3. If a topological space (X,T ) is weakly Menger P-space, then (X,T ) is almost Menger.

Proof. Let (Un : n ∈N) be a sequence of open covers of X. Since X is weakly Menger, there exists a sequence
(Vn : n ∈ N) such that for every n ∈ N,Vn is a finite subset ofUn and

⋃
n∈N ∪Vn is dense in X. Let x ∈ X.

By the condition of theorem, the intersection of every countable family of open subsets of X is open and
hence, every countable union of closed sets is closed. So,

⋃
n∈N{V : V ∈ Vn} is the closed subset of X. Since⋃

n∈N ∪Vn is the least closed set that contains
⋃

n∈N ∪Vn, we have that
⋃

n∈N ∪Vn ⊆
⋃

n∈N{V : V ∈ Vn}, so⋃
n∈N{V : V ∈ Vn} = X, which proves that X is almost Menger.

We will also see that in P-spaces the properties of almost Lindelöf and almost Menger are equivalent.

Proposition 2.4. Every almost Lindelöf P-space is almost Menger.

Proof. Let X be an almost Lindelöf P-space and let (Un : n ∈N) be a sequence of open covers of X. We may
assume that for each n ∈ N, Un is closed for finite unions. Put U = {

⋂
n∈NUn : Un ∈ Un}. Then U is an

open cover for X, since X is a P space. As X is almost Lindelöf, there exists a countable subset (Vn : n ∈N) of
U so that

⋃
n∈N Vn = X. For every n ∈ N, we write Vn =

⋂
k∈NUn

k , where Un
k ∈ Uk. But then

⋃
n∈NUn

n = X,
since Vn ⊂ Un

n for every n ∈N, which shows that X is almost Menger.

In [4] it is stated that weakly Lindelöf P-spaces are weakly Menger. We have the following corollary:

Corollary 2.5. Let X be a regular P-space. Then the following statements are equivalent:

(1) X is Menger;

(2) X is almost Menger;

(3) X is weakly Menger;

(4) X is Lindelöf;

(5) X is almost Lindelöf;

(6) X is weakly Lindelöf.
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We conclude this section with another condition under which the properties of almost Menger and
weakly Menger are equivalent. Recall that a family V of subsets of a topological space X is locally finite
refinement of a familyU of subsets of X if for every V ∈ V there exists U ∈ U such that V ⊂ U and for every
point x ∈ X there exists a neighborhood of x which intersects only finitely many elements ofV. We say that
a topological space X is d-paracompact if every dense family of subsets of X has a locally finite refinement.

Proposition 2.6. If a topological space X is weakly Menger and d-paracompact, then X is almost Menger.

Proof. Let (Un : n ∈N) be a sequence of open covers of X. Since X is weakly Menger, there exists a sequence
(Vn : n ∈ N) such that for every n ∈ N, Vn is a finite subset of Un and

⋃
n∈N ∪Vn is dense in X. By

the assumption, {Vn : n ∈ N} has a locally finite refinement W. Then
⋃
W =

⋃
n∈N ∪Vn and therefore⋃

W =
⋃

n∈N ∪Vn. AsW is a locally finite family, we have that
⋃
W =

⋃
W∈WW. Since for every W ∈ W

there exists n ∈ N and VW ∈ Vn so that W ⊂ VW , we have that
⋃

n∈N{V : V ∈ Vn} = X, so we showed that
X is almost Menger.

3. Subspaces and products

It is known that Lindelöf property is preserved under closed subsets. Almost Menger and weakly
Menger properties are not invariant with respect to closed subspaces as the following examples will show.

Example 3.1. A closed subspace of an almost Menger space which is not almost Menger.

If (R, τ
′

) is the pointed rational extension of R (see Example 2.1), then the set of irrational points I with
the topology τ

′

restricted to I is the closed subspace of almost Menger space and it is not almost Menger,
because every x ∈ I is clopen in T

′

restricted to I.

Example 3.2. A closed subspace of a weakly Menger space which is not weakly Menger.

If (R, τ) is the same topological space as in Example 2.2, then the set of irrational points I with the
topology τ restricted to I is the closed subspace of weakly Menger space and it is not weakly Menger,
because it is uncountable discrete space.

In [22] it is shown that almost Lindelöf property is preserved under clopen subsets and that weakly
Lindelöf property is closed under regularly closed subsets. We can ask ourselves if the analogous statements
hold in the case of almost Menger and weakly Menger properties.

Proposition 3.3. Every clopen subset of an almost Menger space is almost Menger.

Proof. Let F be a clopen subset of almost Menger space X and let (Un : n ∈N) be a sequence of open covers
of F. ThenVn = {Un} ∪ {X \ F} is an open cover of X for every n ∈N. Since X is almost Menger, there exist
finite subsetsV

′

n ofVn for each n ∈ N so that
⋃

n∈N{V : V ∈ V′

n} = X. But X \ F is clopen, so X \ F = X \ F
and
⋃

n∈N{V : V ∈ V′

n,V , X \ F} covers F.

Proposition 3.4. Every regularly closed subset of a weakly Menger space is weakly Menger.

Proof. Let F be a regularly closed subset of weakly Menger space X and let (Un : n ∈ N) be a sequence
of open covers of X. Then Vn = {Un} ∪ {X \ F} is an open cover of X for every n ∈ N. Since X is
weakly Menger, there exist finite subsets V

′

n of Vn for every n ∈ N so that
⋃

n∈N ∪V
′

n is dense in X. Put
V
′

=
⋃

n∈N{V : V ∈ V′

n,V , X \ F}. ThenV′
⋃

(X \ F) = X. Since F = int(F), we have that int(F)∩(X \ F) = ∅,
so int(F) ⊂ V′ and F = int(F) ⊂ V′ .

The productivity of the weakly Menger property is considered in [4], so we now investigate only the
problem of productivity of almost Menger property. The following example shows that the product of
almost Menger spaces is not always almost Menger.
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Example 3.5. An almost Menger space X such that X2 is not almost Menger.

Let S be the Sorgenfrey line and let R be the set of reals. If i : S→ R is the identity map and X ⊂ R then
by XS we denote i−1(X) (see [20]). Lelek showed in [16] that for every Lusin set L in R, LS is Menger and,
therefore, almost Menger, but if L satisfies that (L× L)∩ {(x, y) : x + y = 0} is uncountable, then LS × LS is not
Menger and since S × S is regular and every subspace of a regular space is regular, we have that the square
of LS is regular and not Menger. Hence, L2

S
is not almost Menger.

In [22] it is proved that the product of an almost Lindelöf space and a compact space is almost Lindelöf.
Recall that a topological space X is almost compact if for every open coverU of X there exists a finite subset
V of U such that

⋃
{V : V ∈ V} covers X (Note that the notions of almost compact and weakly compact

spaces are equivalent). The following statement holds:

Theorem 3.6. If X is almost Menger, and Y is almost compact, then X × Y is almost Menger.

Proof. Let (Un : n ∈N) be a sequence of open covers of X × Y. Then for each n ∈N there exist open covers
Vn andWn of X and Y, respectively, such thatUn =Vn ×Wn. Considering that Y is almost compact there
exists a sequence (An : n ∈N) of finite subsets ofWn such that

⋃
{A : A ∈ An} covers Y for each n ∈N. Since

X is almost Menger, there exist finite subsetsV
′

n ofVn so that
⋃

n∈N{V : V ∈ V′

n} = X. Put Rn = V
′

n × An.
Then for each n ∈N, Rn is a finite subset ofUn and we will show that

⋃
n∈N{R : R ∈ Rn} = X × Y.

Let (x, y) ∈ X × Y. Then there exist n ∈N and V ∈ V′

n so that x ∈ V. There is also W ∈ An so that y ∈W.
That implies (x, y) ∈ V ×W = V ×W which concludes the proof.

Many mathematicians tried to characterize spaces that are productively Lindelöf and studied the re-
lationship between those spaces and Menger spaces (see [24], [25]). K. Alster in [1] defined a topological
space that is productively Lindelöf in the following way: Call a family F of Gδ subsets of a space X a Gδ

compact cover if there is for each compact subset K of X a set F ∈ F such that K ⊆ F. We say that a space X
is an Alster space if each Gδ compact cover of the space has a countable subset that covers X.

We define the almost version of Alster space.

Definition 3.7. We say that a topological space X is almost Alster if each Gδ compact cover of X has the
countable subsetV such that

⋃
{V : V ∈ V} = X.

Problem 3.8. Find a topological space which is almost Alster and not Alster.

The following statement holds:

Theorem 3.9. If X and Y are almost Alster spaces, then X × Y is an almost Alster space.

Proof. Let X and Y be almost Alster spaces and letU be a Gδ compact cover of X×Y. Then for every compact
subsets K of X and C of Y there exist, respectively, Gδ subsets G(K) and H(C) of X and Y, respectively, such
that K ⊂ G(K) and C ⊂ H(C) and, since K×C is compact, we can find U ∈ U so that G(K)×H(C) ⊂ U. Notice
that {G(K) : K ⊂ X compact} and {H(C) : C ⊂ X compact} are Gδ compact covers of X and Y, respectively.
Then there exist sequences (Kn : n ∈ N) and (Cm : m ∈ N) of compact subsets of X and Y, respectively, so
that

⋃
n∈NG(Kn) = X and

⋃
m∈N H(Cm) = Y. For every n ∈ N and every m ∈ N we can find Unm ∈ U such

that G(Kn)×H(Cm) ⊂ Unm. We claim that
⋃

n,m∈NUnm = X×Y. Indeed, let (x, y) ∈ X×Y. Then we can choose
n ∈ N and m ∈ N such that x ∈ G(Kn) and y ∈ H(Cm), so (x, y) ∈ G(Kn) × H(Cm) = G(Kn) × H(Cm) ⊂ Unm, so
(x, y) ∈ Unm.

It is known that the Alster property implies the Menger property. The analogous statement holds for
almost versions of these notions.

Theorem 3.10. If X is an almost Alster space, then X is almost Menger.
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Proof. Let (Un : n ∈ N) be a sequence of open covers of X. We may assume that for every n ∈ N Un is
closed for finite unions. PutU = {

⋂
n∈NUn : Un ∈ Un}. Members ofU are Gδ sets andU is a cover for X.

If K is a compact subset of X, then there exists a finite subsetV ofU such that K ⊂
⋃
V. Since X is almost

Alster, we can pick a countable subset {An : n ∈ N)} of U so that X ⊂
⋃

n∈N An. Let An =
⋂

k∈NUn
k , where

Un
k ∈ Uk for every n ∈N and denote Bn = Un

n ∈ Un. We shall prove that X ⊆
⋃

n∈N Bn. We have that An ⊂ Bn

for every n ∈N and hence, An ⊂ Bn for every n ∈N. Therefore, X ⊂
⋃

n∈N An ⊂
⋃

n∈N Bn.

Corollary 3.11. If X is almost Alster, then X is almost Menger in all finite powers.

In [4] the Alster property is characterized in the terms of selection principles. In the similar way we
show the connection between the notion of almost Alster and selection principles.

We need the following notation (see [1], [4]):

GK: The family consisting of sets U where X is not in U, each element of U is a Gδ set, and for each
compact set C ⊂ X there is a U ∈ U such that C ⊆ U.

G: The family of all coversU of the space X for which each element ofU is a Gδ set.

GΩ: The family of all coversU ∈ G such that for every finite subset F of X there exists U ∈ U containing F.

We also define the following classes of covers:

G: The family consisting of setsU such that every U ∈ U is Gδ set and
⋃
{U : U ∈ U} = X.

GΩ: The family of all setsU ∈ G such that for every finite subset F of X there exists U ∈ U so that F ⊂ U.

Proposition 3.12. For a topological space X the following statements are equivalent:

(1) X is almost Alster;

(2) X satisfies the selection hypothesis S1(GK,G);

(3) X satisfies the selection hypothesis S1(GK,GΩ).

Proof. (1) =⇒ (2): Let (Un : n ∈N) be a sequence of elements from GK and putU = {∩Un : Un ∈ Un}. Then
U is a cover of X such that his elements are Gδ sets and for every compact subset K of X there exists U ∈ U
such that K ⊂ U. By assumption, we can find a countable subset V of U so that

⋃
{V : V ∈ V} = X. Put

Vn =
⋂

k∈NUn
k , where Un

k ∈ Uk. Then Un
n ∈ Un and

⋃
n∈NUn

n = X, so X satisfies S1(GK,G).
(2) =⇒ (1): Let U be a cover of X consisting of Gδ sets such that for every compact subset K of X there

exists U ∈ U so that K ⊂ U. Let Un = U for every n ∈ N. By (2), we can choose Un ∈ U for every n ∈ N
such that

⋃
n∈NUn = X,so X is almost Alster.

(2) =⇒ (3): Since the finite power of almost Alster spaces is almost Alster, we have that if X satisfies
S1(GK,G), then Xk also satisfies S1(GK,G) for every k ∈ N. Let (Un : n ∈ N) be a sequence of covers from
GK. Then {(U)k : U ∈ Un} is a sequence of GK covers of Xk, so we can choose Un ∈ Un for every n ∈N such
that
⋃

n∈N (Un)k = Xk. Put F = (x1, x2, ..., xk) ∈ Xk. Then there exists n ∈N such that (x1, x2, ..., xk) ∈ (Un)k and
therefore, for every i from 1 to k, xi ∈ Un. That implies F ⊂ Un, so X satisfies S1(GK,GΩ).

In [4] the following class of covers was defined:
GΓ: The set of coversU ∈ Gwhich are infinite, and each infinite subset ofU is a cover of X.
We define the following class of covers:

GΓ: The set of all coversU ∈ Gwhich are infinite, and for every x ∈ X the set {U ∈ U : x < U} is finite.
In [4] it is proved that a topological space that satisfies the selection hypothesis S1(GK,GΓ) is productively

Menger. In the same manner we prove the following statement:
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Theorem 3.13. If X satisfies the selection hypothesis S1(GK,GΓ) and Y is almost Menger, then X × Y is almost
Menger.

Proof. Let (Un : n ∈ N) be a sequence of open covers of X × Y. We may assume that for each n ∈ N,Un is
closed for finite unions. Then for every compact subset K of X and every n ∈ N there is Gδ set Φn(K) such
that K ⊂ Φn(K). Then for every y ∈ Y and every n ∈ N there exists U ∈ Un so that Φn(K) × {y} ⊂ U. Let
Wn = {Φn(K) : K ⊂ Xcompact}. Then (Wn : n ∈N) is a sequence of Gδ compact covers, and since X satisfies
the selection hypothesis S1(GK,GΓ), we can find a sequence (Kn : n ∈N) of compact subspaces of X so that
every element x ∈ X belongs to Φn(Kn) for all but finitely many n ∈N. Put Sn = {V ⊂ Y : V open and there
is U ∈ Un such that Φn(Kn) × V ⊂ U}. Then (Sn : n ∈ N) is a sequence of open covers of Y. As Y is almost
Menger, we can choose for each n ∈Nfinite subsetsVn ofSn, so that

⋃
n∈N{V : V ∈ Vn} = Y. For every n ∈N

and every V ∈ Vn we pick UV ∈ Un so that Φn(Kn) × V ⊂ UV. We claim that
⋃

n∈N{UV : V ∈ Vn} = X × Y.
Indeed, let (x, y) ∈ X ×Y. Then there is n0 ∈N such that for every n ≥ n0, x ∈ Φn(Kn) and there exist n1 ≥ n0

and V ∈ Vn1 so that y ∈ V. That implies (x, y) ∈ Φn1 (Kn1 ) × V ⊂ UV, where UV ∈ Un1 .

4. D-spaces

The properties of D-spaces are explored by several authors (see survey [13]), but there are problems
which remained unsolved for many years. It is still unknown whether Lindelöf spaces are D-spaces.
However, recently Aurichi in [3] showed that Menger spaces are D-spaces. We shall prove the analogous
statement for almost Menger spaces.

We say that a topological space (X, τ) is a D-space (see [11]) if for every function f : X → τ such that
x ∈ f (x) which is called neighborhood assignment, there exists a closed and discrete subspace D of X such
that
⋃

x∈D f (x) = X.
We introduce the following notion:

Definition 4.1. We say that a topological space (X, τ) is an almost D-space if for every function f : X → τ

such that x ∈ f (x), there exists a closed and discrete subspace D of X such that
⋃

x∈D f (x) = X.

Problem 4.2. Find a topological space which is an almost D-space and not a D-space.

In the proof of the following theorem, we use the notion of game corresponding to the almost Menger
property, so we need to explain the notation.

Let A and B be classes of open covers of a topological space X. The symbol Gω
f in(A,B) denotes the

following infinite game: For every n ∈N, players ONE and TWO play an inning. In inning n, ONE chooses
An ∈ A and then TWO responds with a finite subset Bn of An. The play A0,B0, ...,An,Bn, ... is won by TWO
if {Bn : n ∈N} ∈ B. Otherwise, ONE wins.

In [5] it was proved that in Lindelöf spaces, the almost Menger property is equivalent to the statement
that ONE does not have a winning strategy in the game Gω

f in(O,O), so we will use that in order to prove the
following statement.

Theorem 4.3. Let X be a Lindelöf space. If X is almost Menger, then X is an almost D-space.

Proof. Let (N(x) : x ∈ X) be a neighborhood assignment. Then U = {N(F) : F ⊂ X is finite}, where
N(F) is an open subset of X which contains F, is an open cover of X. By theorem 28 from [5], ONE does
not have the winning strategy in the game Gω

f in(O,O). Let the first move of ONE be U = {N(F0): F0

is a finite subset of X} and let TWO responds with N(F0). In the second inning, ONE chooses a cover
U1 = {N(F1) : F1 = F ∪ F0,F ∩ N(F0) = ∅, F is a finite subset of X} and ONE responds with N(F1). In the
inning n, ONE selects Un = {N(Fn) : Fn = F0 ∪ F1 ∪ ... ∪ Fn−1 ∪ F,F ∩

⋃n−1
i=0 N(Fi) = ∅,F is a finite subset of

X} and TWO responds with N(Fn). Considering that ONE does not have a winning strategy in this game,
there exists a sequence (Fn : n ∈N) of finite subsets of X such that

⋃
n∈NN(Fn) = X. Put D =

⋃
n∈N Fn. First

note that for every finite subset F of X,N(F) =
⋃

x∈FN(x). By construction, it is obvious that D is closed and
discrete and hence we proved our statement.
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of Mathematics 79 (1978) 37–46.
[7] M. Bonanzinga, F. Cammaroto, B.A. Pansera, B. Tsaban, Diagonalizations of dense families, Topology and its Applications 165

(2014) 12–25.
[8] P. Daniels, Pixley-Roy spaces over subsets of the reals, Topology and its Applications 29 (1988) 93–106.
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